

iXblue Polarization SCrambler PSC-LN

网址:www.bonphot.com 邮箱:sales@bonphot.com 电话:0512-62828421

Introduction

The Lithium Niobate Integrated Optical Polarization Scrambler (PSC-LN) modulator is based on:

- A modified phase modulator on X-cut (low speed) or Z-cut (high speed) LiNbO₃.
- An optical waveguide made by titanium in-diffusion and supporting both TE- and TM-polarization states.
- An optical waveguide with a low Polarization Dependent Loss (PDL).
- An input polarization maintaining (PM) fiber whose slow axis is set at 45° from the TE and TM axis of the LiNbO₃ crystal.
- An output standard single mode fiber.
- Lumped electrodes for low frequency applications (up to 200 MHz).
- Travelling wave electrodes for high frequency applications (up to 30 GHz).

电话: 0512-62828421 **Xblue**

网址:www.bonphot.com 邮箱:sales@bonphot.com

Principle

- The PSC-LN are based on a birefringent LiNbO₃ phase modulator whose waveguide is illuminated at 45 ° of its main axis. The input state of polarization (SOP) is thus equally split up in two orthogonal TE and TM polarization states.
- Due to the birefringence properties of the LiNbO3 cristal (extraordinary and ordinary main axes) and the configuration of the modulator, the TEpolarized wave propagates at a different speed compared to the TMpolarized wave.
- When a voltage is applied via the control electrodes, an additionnal optical path difference between the TE and TM components is produced by the electro-optical effect, resulting in a new ajustable SOP for the output light (linear, circular or elliptic).

网址:www.bonphot.com 邮箱:sales@bonphot.com

Principle:

Phase shift on the extraordinary fast axis:

$$\phi_e = \frac{2\pi}{\lambda} \left[n_e L + \frac{1}{2} n_e^3 r_{33} l \eta \frac{V_0}{g} \right]$$

Phase shift on the ordinary slow axis:

$$\phi_o = \frac{2\pi}{\lambda} \left[n_o L + \frac{1}{2} n_o^3 r_{13} l \eta \frac{V_0}{g} \right]$$

Differential phase shift:

$$\Delta \phi = \frac{2\pi}{\lambda} \left[(n_e - n_o)L + \frac{1}{2} (n_e^3 r_{33} - n_o^3 r_{13}) l \eta \frac{V_0}{g} \right]$$

Symbol	Glossary
n_e	Extraordinary refractive index
n_o	Ordinary refractive index
r_{13}, r_{33}	LiNbO ₃ Electro-optic coefficients
L	Crystal length
l	Electrode length
g	Electrodes gap
λ	Optical Wavelength
V_0	Applied Voltage
η	Electro-optic overlap

Half-wave voltage V_{π} : voltage applied for a π radians phase shift between the fast and slow axes.

$$V_{\pi} = \frac{\lambda g}{(n_e^3 r_{33} - n_o^3 r_{13}) l \eta}$$

iXblue

电话:0512-62828421

Polarization on the Poincaré Sphere vs applied voltage

When a variable voltage is applied on the electrodes, the output SOP follow a circle (red curve) whose trajectory crosses the states of right and left circular polarization and the two states of linear polarizations at +/- 45°.

Exemple of an experimental Poincaré sphere trace of the output SOP for a continuous voltage of 10 V_{pp} applied to the modulator.

PL denotes the linear polarisation states.

邮箱:sales@bonphot.com

iXblue

Degree Of Polarization (DOP)

- On Lithium niobate modulators, the polarization scrambling method is based on applying a periodically voltage at a speed equal or higher than the bit rate.
- The degree of polarization (DOP) describes the portion of polarized light during the detection time frame.
- For the specific case of a periodically sinusoidal voltage applied on the electrodes:

$$V(t) = V_0 sin(\Omega t)$$

DOP=
$$|J_0(\gamma)|$$

with
$$\gamma = \pi \frac{V_0 M(\Omega)}{V_\pi}$$
, the modulation index.

 $M(\Omega)$, the electro-optic response of the modulator

- The DOP tends to zero at specific modulation indexes.
- For the first root: $V_0 = 0.7655 V_{\pi} M(\Omega)$

网址:www.bonphot.com 邮箱:sales@bonphot.com

Configuration: Low frequency Polarisation Scrambler

PSC-LN-0.1

 X-cut: better stability against environmental perturbations (temperature variations).

 Lumped electrodes: well adapted to the low frequency range (kHz, MHz).

网址: www.bonphot.com

Simulated degree of polarization vs applied voltage

电话: 0512-62828421 **Xblue**

邮箱:sales@bonphot.com

Configuration: High frequency Polarisation Scrambler PSC-LN-10

- Z-cut: high efficiency (low driving voltage).
- Travelling wave electrodes: very wide bandwidth (up to 30 GHz).
- Low electrical reflections (S_{11}) thanks to travelling wave electrodes matched close to 50 Ω .

网址: www.bonp**FleatricOniv**e Power (dBm)

Ti-Indiffused waveguides

Simulated degree of polarization vs electrical power

电话: 0512-62828421 **iXblue**

邮箱: sales@bonphot.com

Conclusion

LiNbO₃ Integrated Optical Polarization Scrambler PSC-LN modulator features:

- Ajustable scrambling speed over a very wide range of frequencies.
- Compactness.

网址:www.bonphot.com

- Low electrical power consumption.
- Wide operating wavelength range.

电话: 0512-62828421 **Xblue** 邮箱: sales@bonphot.com